1 – Covalent Bonding		
Covalent Bond	Bond formed between two non-metal atoms when they share a pair of electrons .	
Double Covalent Bond	Bond formed between two non-metal atoms when they share two pairs of electrons .	
Electrostatic Attraction	Between the negative shared electrons and the positive nuclei of the atoms.	
2 – Simple Molecular Covalent Substances		
Structure	Small molecules made up of atoms covalently bonded together. Weak intermolecular forces between molecules. E.g. methane (CH ₄), ammonia (NH ₃).	
Melting & Boiling Points	Low -> intermolecular forces are weak -> do not require much energy to break.	
Size of Molecule	Larger molecules -> stronger intermolecular forces -> higher melting and boiling point.	
Conductivity	Do not conduct -> no charged particles.	
3 – Polymers Covalent Substances		
Structure	Long chain molecules made up of repeating units called monomers. Intermolecular forces between molecules. E.g. poly(ethene)	
Melting & Boiling Points	Higher than simple molecular covalent as larger molecules. But lower than ionic and giant covalent.	
Conductivity	Do not conduct -> no charged particles.	
4 – Giant Covalent Substances		
Structure	Giant molecule made up of very many atoms all bonded to each other by strong covalent bonds . E.g. diamond, graphite and silicon dioxide (SiO ₂).	
Melting & Boiling Points	High -> many strong covalent bonds -> require a lot of energy to break.	
Conductivity	Do not conduct -> no charged particles (except graphite).	

5 – Allotropes of Carbon (contain covalent bonds)		
Diamond	Each carbon bonded to 4 others. Very hard . Very high melting point. Does not conduct . Uses -> cutting and drills .	
Graphite	Each carbon bonded to 3 others. Sheets of atoms arranged in hexagons . Weak forces between sheets -> can slide over each other. Conducts electricity -> free electrons . Uses -> lubricants and pencil lead .	
Graphene	Single sheet of graphite. Very light and conducts electricity. Uses -> strengthening materials and electronics.	
Fullerenes	Molecules of carbon shaped like tubes or balls . E.g. Buckminsterfullerene = C ₆₀ . Uses -> lubricants, electronics, catalysts and strengthening.	
6 – Metallic Bonding		
Structure	Lattice of positively charged metals ions surrounded by a sea of delocalised electrons. Held together by strong electrostatic forces.	
Melting & Boiling Points	High -> many strong electrostatic forces -> require a lot of energy to break.	
Electrical Conductivity	Conduct electricity -> free electrons can move through whole structure -> carry charge.	
Thermal Conductivity	Conduct heat -> free electrons can move through whole structure -> carry thermal energy.	
Malleability	Can be bent or hammered into shape -> layers of atoms can slide over each other.	
Alloys	Mixture of metals or a mixture of a metal and a non-metal.	
Strength of Alloys	Different sized atoms -> distorts layers so they cannot slide over each other -> stronger than pure metal.	

GCSE Science

Chemistry C2 – Covalent & Metallic Bonding