3.1 – Cell Structure and Specialised Cells		
Eukaryotic Cell	Complex cell with a nucleus.	
Prokaryotic Cell	Small simple cell with <u>no</u> nucleus.	
Prokaryotic DNA	Stored as single DNA loop or small rings (plasmids).	
Ribosomes	Where proteins are synthesised .	
Cell Wall	Made of cellulose -> strengthens plant and algal cells.	
Sperm cells	Fertilise egg cells. Carry male DNA. Tail for swimming. Many mitochondria. Enzymes in head. Half a set of DNA.	
Nerve cells	Carry electrical signals. Long and branched at the ends.	
Muscle cells	Specialised for contraction . Cells are long and contain many mitochondria .	
Root hair cells	Absorb water and minerals from the soil. Root hair projections provide a large surface area. No chloroplasts.	
Xylem Cells	Form tubes that transport water and minerals around plant - > dead cells -> no end walls.	
Phloem Cells	Form tubes that transport dissolved food around plants -> living cells -> small pores in end walls .	
3.2 - Microscopy		
Magnification	Higher magnification = larger image.	
Resolution	Higher resolution = clearer image.	
Equation	Magnification = Image size / Actual size	
Units	From mm to μm x 1000. From μm to mm ÷ 1000.	
Preparing an Onion Slide	Peel thin layer with tweezers -> place on slide -> add iodine stain -> lower cover slip gently to avoid bubbles.	
Using a Light Microscope	Place on stage -> use lowest power objective lens -> adjust with course focus then fine focus -> repeat with higher magnification if needed.	
Electron Microscope	Higher magnification and resolution than a light microscope.	

3.3 – Cell Cycle and Stem Cells		
Chromosomes	Molecules of DNA, 23 pairs found in nucleus, carry genes.	
Cell Cycle	Three stages -> growth & DNA replication, mitosis and cell division.	
Growth & DNA Replication	Cell grows -> number of subcellular structures increases -> DNA replicates -> forms X shaped chromosomes.	
Mitosis	Cell division. Chromosomes line up in centre -> pulled apart by fibres -> two nuclei formed -> cytoplasm and cell membrane divides. Creates two identical daughter cells.	
Differentiation	Process by which cells become specialised.	
Stem Cells	Undifferentiated cells -> can become different types of cell .	
Embryonic Stem Cells	Grown in lab -> made to specialise -> used to replace faulty cells -> treats disease e.g. diabetes and spinal damage.	
Adult Stem Cells	Cells transferred from bone marrow -> replaces faulty blood cells in patient.	
Plant Stem Cells	Found in meristems (tissues in the tips of roots and shoots) -> used to produce clones of rare species and crops with desired features (e.g. disease resistance).	
3.4 – Cell Transport		
Diffusion	Net movement of particles -> from a higher to lower concentration -> down a concentration gradient.	
Osmosis	Net movement of water molecules -> across a partially permeable membrane -> from a higher to lower water concentration -> down a concentration gradient.	
Active Transport	Movement of particles -> from a lower to higher concentration -> against a concentration gradient -> requires energy .	
Factors that Increase Rate of Cell Transport	Steeper concentration gradient, larger surface area, shorter diffusion pathway.	

Y9 Science – Cycle 1 - Sheet 3

Biology B1 – Cell Biology