LOCI VOCABULARY		
loci	a locus is a path of points that follow a rule	
equidistant	equal distance	
regions	'more/further than' indicates shading outside the loci 'within/less than' indicates shading inside the loci	

LOCI		
locus of points equidistant from A	a circle with A at the centre radius is the distance given	A
locus of points equidistant from two points	perpendicular bisector: open compass to over halfway, draw an arc from each end, join where they cross	
locus of points closer to B than A	perpendicular bisector of AB, shade the side closest to B	AB
locus of points equidistant from two lines	an angle bisector: place compass on corner, draw two arcs cross both lines, one further away, draw lines joining top left cross to bottom right and vice versa , join where these lines meet to corner	T X
locus of points a set distance from a line	create two semi-circle s at either end joined by two parallel lines	j j

CIRCLE CALCULATIONS

circle area	$A=\pi r^2$ area = pi x radius²	r
sector	the region of a circle enclosed by two radii and an arc	
sector area	$A = \frac{\theta}{360} \pi r^2$ area = the fraction of the full circle x pi x radius ²	- A B
circumference of a circle	$C = \pi d$ circumference = pi x diameter	d
arc	a part of the circumference of a circle	
arc length	$L = \frac{\theta}{360} \pi d$ arc length = the fraction of the full circle x pi x diameter	× θ θ

Year 9 Unit 3: Geometry Angles

CONGRUENCE			
congruent	objects with exactly the same shape and size all angles and all sides are the same		
similarity	two shapes are similar when one is an enlargement of the other all angles are the same, but the lengths of sides are different		
scale factor	the ratio of corresponding sides of two similar shapes		
CONGRUENT TRIANGLES			
there are four ways to prove triangle congruency			
side, angle, side (SAS)	show two sides and the angle between them are congruent		
angle, side,	show two angles and the side between		

angle (ASA)	them are congruent	
side, side, side	show all corresponding sides are	
(SSS)	congruent	
right-angle,	show both triangles have a right angle ,	
hypotenuse,	congruent hypotenuses and one other	
side (RHS)	congruent side	

SIMILARITY

two or more shapes with **congruent angles** but **corresponding sides** all **linked** by the **same scale factor** if the **scale factor** of **enlargement** is x**length** scale factor: x**area** scale factor: x^2 **volume** scale factor: x^3

ANGLES IN POLYGONS: FACTS

polygon	a 2D shape with 3 or more straight sides	
regular polygon	a polygon with sides that are all equal and angles that are all equal	
interior angle	an angle inside a polygon	
sum of interior angles	(n – 2) x 180° where n is the number of sides	
interior angle of regular polygon	${(n-2) \ x \ 180} \over n$ where 'n' is number of sides	
exterior angle	the angle formed outside a polygon when one side is extended interior angle + exterior angle = 180° because they made a straight line all exterior sum to 360°	
some polygon interior angle sums	triangle = 180° quadrilateral = 360° pentagon = 540° hexagon = 720°	heptagon = 900° octagon = 1080° nonagon = 1260° decagon = 1440°