2.1 - Mass and Weight		
Mass	Measure of the amount of material something is made up of. Mass is the same on all planets .	
Measuring Mass	Use a mass balance .	
Units for Mass	Kilograms (kg)	
Weight	Measure of the force on something due to gravity . Changes depending on which planet you are on.	
Measuring Weight	Use a Newton meter.	
Units for Weight	Newtons (N)	
Equation	Weight = mass × gravitational field strength (W = m x g)	
Gravitational Field Strength	Strength of gravity on a planet. On Earth, g = 10 N/kg.	
2.2 - Stretching Springs		
Deformation	Changing the shape of an object – stretching , compressing or bending . Requires at least two forces.	
Elastic Deformation	The object returns to its original size and shape once the forces are removed .	
Inelastic Deformation	The object does not return to its original size and shape once the forces are removed .	
Hooke's Law	The extension of a stretched spring is directly proportional to the force applied to it, up to the limit of proportionality .	
Directly Proportional	Shown on a graph by the line of best fit being a straight line through the origin . If one variable doubles, the other doubles.	
Force – Extension Graphs	Plot force on the y axis, extension on the x axis. The steeper the line, the stiffer the spring.	
Equation	Force = spring constant × extension (F = k x e)	

2.3 - Speed, Distance and Time		
Equation	speed = distance / time (s = d/t)	
Units	speed = m/s distance = m time = s	
Typical speed values	Walking = 1.5 m/s , Running = 3 m/s , Cycling = 6 m/s , Car = 25 m/s , Sound (in air) = 330 m/s	
Converting Distances	1 m = 100 cm, 1 km = 1000 m	
Converting Times	1 minute = 60 s, 1 hour = 60 minutes	
Distance – Time Graphs	Straight diagonal line = constant speed Steeper line = faster speed Flat horizontal line = stationary	
2.4 - Terminal Velocity for a Sky Diver (Don't draw diagrams)		
Stage 1	Weight is much greater than air resistance. Resultant force acting down. Sky diver accelerates as he falls.	
Stage 2	As sky diver accelerates , air resistance increases. Resultant force is less but still acts down . Sky diver still accelerates but at a slowe r rate.	
Stage 3	Air resistance is now equal to the weight. Forces are balanced – no resultant force. Sky diver falls at a constant speed known as terminal velocity.	
Stage 4	Air resistance now greater than weight as parachute provides a larger surface area. Resultant force now acts up. Sky diver is still falling but decelerates.	
Stage 5	As sky diver decelerates , air resistance decreases . Forces are balanced again – no resultant force. Sky diver fall at a new slower terminal velocity .	

Y8 Science Cycle 1 - Sheet 2

Forces & Motion