INEQUALITIES		
where two expressions are not equal in value		
strict	< less than > greater than	
non-strict	≤ less than or equal to ≥ greater than or equal to	

ALGEBRAIC NOTATION	
like terms	terms which are the same apart from their numerical coefficients: they are the same variable and have the same power
collect like terms	you can add or subtract like terms using the coefficients
simplifying algebraic fractions	factorise the numerator and denominator and cancel common factors, sometimes requires factorisation

INSTRUCTIONS: GENERAL	
evaluate	find the value of
form	to write or produce
substitute	replacing letters with numbers to calculate the numerical value
simplify	to reduce to its simplest form
expand	multiply terms inside a bracket by those outside the bracket, remove the brackets using the grid method

FACTORISING	
factorise	finding the factors of an expression the reverse of expand , it is when we write an expression using brackets , use reverse grid
factor	a quantity which divides equally into a number, e.g. factors of 8 are 1, 2, 4 and 8
factorising a general quadratic	quadratic: x² + bx + c, factorised form: (x + ?)(x + ?) '?' are two numbers whose product is 'c' and sum is 'b', split the middle term and put into a reverse grid to find the brackets
	quadratic: $a^2 - b^2$ factorised form: $(a - b)(a + b)$ square root each number from the original expression

Links to: LAWS OF INDICES		
When the base is the same , we use the following rules:		
multiplying	add the powers e.g. $x^a \times x^b = x^{a+b}$	
dividing	subtract the powers e.g. $x^a \div x^b = x^{a-b}$	
raising indices to other indices	multiply the powers. $e.g. (x^a)^b = x^{a \times b}$	

Year 8 Unit 3: Algebra

INSTRUCTIONS: EQUATIONS	
solve	find the value of an unknown or variable, use inverse operations and the balancing method
rearrange	changing the subject of a formula sometimes called transposing use inverse operations and the balancing method, like when we solve an equation
inverse	the opposite
balance an equation	do the same to both sides of the "=" use to solve an equation, or rearrange a formula
subject of an equation	a single unknown or variable that everything else is equal to
solution of an equation	a value we can put in place of a variable that makes the equation true
order of operations	the laws regarding the order in which to calculate , used in algebra too brackets, other, multiply and divide, add and subtract

SEQUENCES	
linear sequences	a sequence where the difference between terms increases or decreases by the same amount each time also known as an arithmetic sequence use DiNO to find the nth term to generate a sequence substitute values of 'n' in, e.g. 2nd term, $n=2$ algebraically: $x_n = an + b$
common difference	the amount we add or subtract each time in a linear sequence
quadratic sequences	a sequence of numbers with an $\mathbf{n^2}$ in the position to term rule (nth term) the second difference between consecutive terms is constant algebraically: $x_n = a\mathbf{n^2} + b\mathbf{n} + c$
geometric sequences	a sequence of numbers where each term is found by multiplying the previous one by a number called the common ratio 'r' algebraically: $x_n = \alpha r^{n-1}$ increasing: the ratio is an integer , decreasing : the ratio is a fraction
common ratio (r)	the amount we multiply by each time in a geometric sequence, can be a fraction

LINEAR SEQUENCES inks to: LINEAR GRAPHS

m is the gradientc is the y-intercept

y = mx + c

the **general equation** of a linear graph