Year 10 Unit 7: 2D Harder Algebra

SOLVING QUADRATIC EQUATIONS

quadratic	a polynomial where the highest power of x is x²	
solving a quadratic	finding the roots of the graph there are usually two roots / solutions	
general quadratic equation	a quadratic equation is of the form $ax^2 + bx + c = 0$ where a , b and c are numbers, a $\neq 0$	
the quadratic formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
factor	a quantity which divides equally into a number, e.g. factors of 8 are 1, 2, 4 and 8	
factorising a general quadratic	quadratic: x ² + bx + c factorised form: (x + ?)(x + ?) '?' are two numbers whose product is 'c' and sum is 'b'	
difference of two squares	quadratic: a² – b² factorised form: (a – b)(a + b) square root each number from the original expression	
completing the square	a quadratic in the form $x^2 + bx + c$ written in the form $(x + p)^2 + q$ the turning point of the quadratic is (-p,q)	

SIMPLIFYING ALGEBRA		
collect like terms	you can add or subtract like terms using the coefficients	
simplifying algebraic fractions	factorise the numerator and denominator and cancel common factors, sometimes requires factorisation	

ELINCTIONS		
function	a special type of equation where each input has a single output	
	input – a variable you choose output – a variable that is calculated	
function notation	f(x) x is the input value f(x) is the output value	
inverse function	written: f ⁻¹ (x) a function that performs the opposite process of the original function	
composite function	written: for example, fg(x) a combination of two or more functions to create a new function fg(x) means 'do g first, then f' gf(x) means 'do f first, then g'	

Links to: FRACTIONS: OPERATIONS			
add	you need a common denominator, then add the numerator	$\frac{A}{B} + \frac{C}{B} = \frac{A+C}{B}$	
subtract	you need a common denominator, then add the numerator	$\frac{A}{B} - \frac{C}{B} = \frac{A - C}{B}$	
multiply	multiply the numerators multiply the denominators	$\frac{A}{B} \times \frac{C}{D} = \frac{AC}{BD}$	
divide (KCF)	keep the first fraction change the ÷ to x flip the second fraction, then multiply	$\frac{\frac{A}{B} \div \frac{C}{D}}{= \frac{AD}{BC}} = \frac{\frac{A}{B} \times \frac{D}{C}}{= \frac{AD}{BC}}$	