1 – Magnets	
Magnetic force	A non-contact force between two magnets or a magnet and a magnetic metal.
Non-contact force	The objects do <u>not</u> need to be touching for the force to act.
Attraction	N and S poles attract. A magnet and a magnetic metal always attract.
Repulsion	N and N poles repel. S and S poles repel.
Magnetic metals	Nickel, iron, cobalt and steel. (NICS)
Permanent magnet	Always has its own magnetic field. E.g., a bar magnet.
Induced magnet	A magnetic metal <u>temporarily</u> gains its own magnetic field when placed in a magnetic field . E.g., a piece of iron placed next to a bar magnet .
2 – Magnetic Fields	
Magnetic fields	Area around a magnet where another magnet or magnetic material experiences a force.
Field lines	Always go from north to south poles . Use an arrow to show direction . Closer together lines = stronger field .
Bar magnets	 Field lines go from N to S pole. Field is strongest at the poles. Field gets weaker as you go further from the magnet.
Investigating using iron filings	Place magnet under paper, sprinkle iron filings and tap paper to make filings line up with the field.
Investigating using a plotting compass	Place compass near N pole, mark where it points, move compass to point and repeat until you reach S pole. Connect points and repeat from different starting positions.
Earth's magnetic field	Created by iron moving in the Earth's core. Same shape as a bar magnet with a magnetic S pole at the geographic north. Compasses point to magnetic S pole -> used for navigation.

3 – Electromagnets		
Electromagnet	Made from a solenoid (coil of wire) that has a current passing through it. Magnetic field around it is shape as bar magnet . Inside solenoid the field is strong and uniform .	
Increasing	1. Use an iron core . 2. Increase the current .	
strength (3 C's)	3. Increase the number of <u>colls</u> .	
Advantages	Can be turned on and off. Strength can be varied . Can reverse poles (reverse the battery). Stronger than permanent magnets .	
4 – Motor Effect and Fleming's Left Hand Rule (HT only)		
Motor effect	When a current-carrying wire is placed in a magnetic field it experiences a force . The force is at right angles to the current and to the magnetic field .	
Fleming's left hand rule	Used to predict the direction of the force . Thu <u>M</u> b = <u>M</u> otion/Force <u>F</u> irst finger = <u>F</u> ield Se <u>C</u> ond finger = <u>C</u> urrent	
Increasing the size of the force	 Increase the strength of the magnetic field. Increase the current through the wire. 	
Calculating force	Force = magnetic flux density × current × length of wire F = B × I × I	
Magnetic flux density	Represents strength of magnetic field. Measured in tesla (T).	
5 – Uses of the Motor Effect (HT only)		
Motors	Loop of wire in a magnetic field. Current is passed through wire. Each side of loop experiences force and loop rotates. Direction of current changes after each half turn.	

GCSE Science

Physics P7 Magnetism & Electromagnetism