1 – Collision theory				
Collision theory	For a reaction to occur, particles must collide with sufficient energy .			
Activation energy	Minimum amount of energy that reactant particles must have when they collide in order to react .			
2 – Factors affecting rate of reaction				
Temperature	Increase temperature \rightarrow particles have more energy so move faster \rightarrow collide more frequently \rightarrow more collisions have activation energy \rightarrow greater chance of successful collisions .			
Concentration/ Pressure	Increase concentration of solution \rightarrow more particles in same volume \rightarrow particles collide more frequently.	Increase pressure of gas → same number of particles occupy smaller space → particles are closer → collide more frequently.		
Surface area	Breaking a solid into smaller pieces increases surface area to volume ratio \rightarrow particles have more area to collide with \rightarrow collisions occur more frequently.			
Catalyst	A substance that speeds up rate of reaction without being used up in the reaction. They work by decreasing the activation energy needed by providing an alternative reaction pathway .			
3 – Measuring rates of reaction				
Calculation	$mean \ rate = \frac{quantity \ of \ reactant \ used}{time \ taken} \ units = g/s$ $mean \ rate = \frac{quantity \ of \ product \ formed}{time \ taken} \ units = g/s \ or \ cm^3/s$			
Measuring mass	Measure mass at the start and end of a reaction to measure mass of gas produced. Not suitable for hydrogen due to small mass.			
Measuring volume	Volume of gas produced can be measured using a gas syringe or an upside-down measuring cylinder filled with water.			
Precipitation	Can be used when initial solution is transparent , and the product is a precipitate , so the solution becomes opaque . The cloudiness of the solution is called the ' turbidity' . Observe a mark through the solution and measure time taken to disappear .			

4 – Rate of reaction graphs			
Shape of graphs	The steeper the line, the faste the rate. As the line gets less steep , the rate is slowing dow A horizontal line means the reaction is finished .	r Volume of Gas n.	
Calculating mean rate	$mean rate = \frac{change in y}{change in x}$ e.g y = 19 - 8.5 = 10.5 x = 40 - 10 = 30 $10.5/30 = 0.35 \text{cm}^3/\text{s}$	25 20 20 15 10 0 0 0 0 0 0 0 0 0 0 0 0 0	
Calculating instantaneous rate	A tangent need to be drawn to calculate change in x and y then the rate of reaction at a particular point. 1. Draw a tangent at the time the rate needs to be calculated. 2. Calculate the gradient of the tangent: change in product ÷ change in 3. Gradient = rate of reaction.	TANGENT AT tr θ Δ(PRODUCT) Δ(TIME) tr TIME	

GCSE Science

Chemistry C6 – Rate and extent of chemical change

5 – Required practical methods				
Observing colour change	1. 10cm ³ of sodium thiosulfate and 40cm ³ of water into conical flask (diluted to 8g/dm ³). 2. Place flask on a white tile with black cross. 3. Add 10cm ³ of dilute HCl and start timer. 4. Gently swirl the flask and stop timer when the cross is no longer visible. 5. Repeat using different concentrations of sodium thiosulfate. 6. Repeat whole investigation twice more and calculate a mean for each concentration.			
Measuring volume of gas produced	1. Add 50cm ³ of 1.0mol/dm³ HCl to a conical flask . 2. Fit a bung and delivery tube to the conical flask. 3. Half fill a trough with water . 4. Fill a measuring cylinder with water , ensure it stays full and invert it into the water trough, with the delivery tube positioned into it. 5. Add a 3cm strip of magnesium to the conical flask and replace the bung, then start the timer . 6. Record the volume of hydrogen gas given off in 10 second intervals. 7. Repeat using 1.5mol/dm³ acid.			
6 - Reversible r	eactions and equilibrium			
Reversible reaction	A reaction where the products can react to produce the original reactants . Shown by: ≓			
Equilibrium	The point at which the rates of the forward and backward reactions in a reversible reaction are the same . The amounts of reactants and products in the reaction container don't change .			
Positions of equilibrium	If the equilibrium lies to the right: the concentration of products is higher than the reactants .	If the equilibrium lies to the left : the concentration of reactants is greater than the products .		
Changing the direction	Heating a reversible reaction moves it in the endothermic direction. Cooling a reversible reaction moves it in the exothermic direction.			

7 – Le Chatelier's principle (HT)			
Le Chatelier's	If you change the conditions of a reversible reaction, at		
principle	equilibrium, the system will try and counteract the change.		
	Decrease temperature \rightarrow reaction moves in exothermic		
Changing	direction.		
temperature	Increase temperature \rightarrow reaction moves in endothermic		
	direction.		
Changing concentration	Increase concentration of reactants \rightarrow system makes more		
	products (the forward reaction increases).		
	Decrease concentration of products \rightarrow system tries to make		
	more products by reducing reactants (forward reaction		
	increases).		
Changing pressure	Only affects equilibrium involving gases.		
	Increase pressure \rightarrow equilibrium tries to reduce it and moves to		
	the side with fewer molecules .		
	Decrease pressure \rightarrow equilibrium tries to increase it and moves		
	to the side with more molecules .		

GCSE Science

Chemistry C6 – Rate and extent of chemical reactions.