4.1 - Structure of an Atom	
Protons	Found in the nucleus , mass = 1 , charge = +1 .
Neutrons	Found in the nucleus , mass = 1 , charge = 0 .
Electrons	Found on the energy levels, mass = very small, charge = -1.
Atom	Overall charge = zero, radius = 1.0 x 10 ⁻¹⁰ m.
Nucleus	Overall charge = positive , radius = 1.0 x 10 ⁻¹⁴ m (very small compared to whole atom -> 1/10000 the size).
Electron absorbs/emits EM radiation	Absorbs = moves to higher energy level (further from nucleus). Emits = moves to lower energy level (closer to nucleus).
4.2 - Atomic Number, Mass Number and Isotopes	
Atomic number	Number of protons .
Mass number	Total number of protons and neutrons.
Isotopes	Atoms of same element , with same number of protons , different numbers of neutrons .
4.3 - Development of the Model of the Atom	
Plum Pudding	Electron discovered by JJ Thomson -> negative electrons
Model	embedded in a ball of positive charge .
Rutherford's	Fired positive alpha particles at thin gold foil. Most passed
Experiment	straight through, small number deflected.
Rutherford's	Tiny positively charged nucleus -> nearly all mass is
Nuclear Model	concentrated here -> most of atom is empty space.
Bohr's Nuclear	Electrons orbit the nucleus in energy levels at specific
IVIODEI	distances from the nucleus.
Chadwick	Discovered neutrons .
4.4 - Radioactive Decay	
Radioactive	Random process -> unstable nuclei emit nuclear radiation ->
decay	alpha particles, beta particles, gamma rays and neutrons.
Activity	Number of nuclei that decay per second , measured in becquerels (Bq)
Count-rate	Number of radiation counts reaching a detector per second , measured in counts per min or counts per s .
Half-Life	Time it takes for number of nuclei to halve , or time it takes for activity (or count rate) to fall to half its initial level .

4.5 - Alpha, Beta and Gamma		
Alpha particle	Made up of 2 protons and 2 neutrons (a helium nucleus).	
Alpha	Range in air = a few cm, low penetration (absorbed by paper),	
properties	highly ionising (large and positive charge)	
Beta particle	Electron emitted from nucleus when neutron turns into proton.	
Beta	Range in air = a few m, moderate penetration (absorbed by a few	
properties	mm of aluminium), moderately ionising.	
Gamma ray	EM waves emitted from nucleus -> travel at speed of light.	
Gamma	Range in air = infinite, high penetration (absorbed by few cm of	
properties	lead or few m of concrete), weakly ionising.	
4.6 - Nuclear Decay Equations		
Alpha decay	Mass number decreases by 4. 4	
equation	Atomic number decreases by 2. 2He	
Beta decay	Mass number does not change.	
equation	Atomic number increases by 11 e	
Gamma Decay	Mass number does not change.	
Equation	Atomic number does not change. 0	
4.7 - Dangers of Nuclear Radiation		
Ionising power	Radiation can knock electrons off atoms, creating positive ions.	
Cell damage	Radiation can ionise atoms in cells -> causes cell damage . Can	
Irradiation	Object/person is exposed to radiation .	
Contamination	Object/person gets radioactive source in or on them.	
Inside Body	Alpha is most dangerous -> absorbed by cells -> highly ionising.	
Outside Body	Gamma and beta most dangerous -> can penetrate body.	
Reducing Risk	Reduce exposure time, increase distance, increase shielding.	
Working with radiation	Use tongs, store in lead boxes, use remote controlled arms, wear a film badge, wear a full body suit, leave the room, stand behind barrier.	

GCSE Science

Physics P4 – Atomic Structure