1 – Key Definitions		
Current	Rate of flow of charge. Units = amps (A). Measured with an ammeter connected in series.	
Potential difference (voltage)	Energy transferred per unit charge . Units = volts (V). Measured with a voltmeter connected in parallel .	
Resistance	Measure of how difficult it is to pass a current through a component. Units = ohms (Ω).	
Power	Rate of energy transfer. Units = watts (W).	
Charge	Transferred by electrons. Units = coulombs (C).	
2 – Series Circuits (only one loop)		
Current rule	Current is the same in all parts of the circuit.	
P.D. rule	P.D. of the cell/battery is shared between the components .	
Resistance rule	Total resistance found by adding up resistance of each component .	
3 – Parallel Circuits (more than one loop)		
Current rule	Current splits between loops.	
P.D. rule	Each loop gets the total P.D. from the cell/battery.	
Resistance rule	Total resistance is lower than the loop with the lowest resistance .	
4 – Electricity Equations		
Q = I x t	Charge = current × time	
V = I x R	Potential difference = current × resistance	
V = E / Q	Potential difference = energy transferred / charge	
E = P x t	Energy transferred = power x time	
P = I x V	Power = current x potential difference	
$P = I^2 \times R$	Power = current ² x resistance	

5 – I-V Characteristics		
Ohmic conductor	Current is directly proportional to potential difference, e.g. resistor at constant temperature.	
Filament lamp	As current increases, temperature increases -> resistance increases -> harder for current to flow -> non-ohmic.	
Diode	Current only flows in one direction -> very high resistance in reverse direction -> non-ohmic.	
6 – Other Circuit Devices		
Thermistor	Temperature dependent resistor -> as temperature increases, resistance decreases -> used in thermostats.R Temperature	
LDR	Light dependent resistor -> as light intensity increases, resistance decreases -> used in automatic lights.	
7 – Electricity in the Home		
UK mains supply	Alternating P.D., 230 V, frequency = 50 Hz.	
Live wire	Brown -> provides alternating P.D> at 230 V.	
Neutral wire	Blue -> completes the circuit -> at 0 V.	
Earth wire	Green and yellow stripes -> stops appliance becoming live -> only carries current if there is a fault -> at 0 V.	
8 – The National Grid		
Step-up transformers	Increase the P.D> lowers the current -> reduces heating effect -> more efficient transmission.	
Step-down transformers	Decrease the P.D> safe for domestic use.	

GCSE Science

Physics P2 – Electricity