1 – Endothermic and Exothermic Reactions		
Conservation of Energy	Energy is conserved in chemical reactions . The amount of energy in the universe at the end of a chemical reaction is the same as before it takes place.	
Exothermic reaction	A reaction which transfers energy to the surroundings . It causes increase in temperature of surroundings.	
Examples	Combustion , neutralisation , oxidation and respiration . Everyday uses include hand warmers and self-heating cans .	
Endothermic reactions	A reaction where energy is taken in from the surroundings . It causes a decrease in temperature of the surroundings.	
Examples	Thermal decomposition and photosynthesis. Everyday uses include sports injury packs.	
2 – Reaction profiles		
Exothermic reactions	-Energy level decreases because energy is given out to surroundings. -Products are at a lower energy than the reactants. -The difference in height represents the overall energy change. -Initial rise represents the activation energy.	
Endothermic reactions	-Energy level increases because energy is taken in from the surroundings. -Products are at a higher energy than the reactants. -The difference in height represents the overall energy change. -Initial rise represents the activation energy.	
Activation energy	The minimum amount of energy that particles must have to react .	

3 – Temperature changes thermometer => lid -Polystyrene cup and cotton large beaker wool for insulation to prevent polystyrene cup 🖂 reaction energy loss. Equipment mixture -Lid to reduce energy loss by evaporation. cotton wool This equipment could be used to investigate effect of Variables concentration, mass or volume of reactants on temperature change.

4 – Bond energies (HT)	
Bond breaking	Bond breaking is endothermic as energy must be supplied to break bonds.
Bond forming	Bond forming is exothermic as energy is released when new bonds are formed.
	Using the bond energies given, calculate the energy change for the reaction between H ₂ and Cl ₂ forming HCI: H - H + Cl - Cl \rightarrow H - Cl H - H: +436 kJ/mol Cl - Cl: +242 kJ/mol H - Cl H - Cl: +431 kJ/mol
Bond energy example calculation	 <u>1. Find the energy required to break the original bonds:</u> (1 x H - H) + (1 x Cl - Cl) = 436 + 242 = 678 kJ/mol <u>2. Find the energy released by forming the new bonds:</u> 2 x H - Cl = 2 x 431 kJ/mol = 862 kJ/mol <u>3. Find the overall energy change for the reaction:</u> Overall energy change = breaking bonds - forming bonds 678 kJ/mol - 862 = -184 kJ/mol

GCSE Science

Chemistry C5 – Energy Changes