1 – Relative Formula Mass					
Relative atomic	Larger numbers on periodic table above element symbol.				
mass (A _r)	e.g. A _r of C = 12, A _r of O = 16				
	Sum of the relative atomic masses of all the atoms in a				
Relative formula	molecular formula.				
111d55 (1VIr)	e.g. W_r of $CO_2 = (1 \times C) + (2 \times O)$ = $(1 \times 12) + (2 \times 16) = 44$				
	A_r x number of atoms of at element x 100				
Percentage mass	M_r of the compound				
of an element in a	e.g. Find the % mass of oxygen in carbon dioxide, CO ₂ .				
compound	<u>1 x 2</u> x 100 = 11.1				
	44				
2 – The Mole (HT only)					
Avogadro constant	6.02 x 10 ²³ particles				
	An amount of a substance that contains the Avogadro				
One mole	constant number of particles.				
	e.g. 1 mole of carbon contains 6.02 x 10 ²³ carbon atoms.				
Mass of one mole	The mass in grams is equal to the relative atomic/formula				
	mass of the substance. a = A of carbon = 12. One mole of carbon = 12 g				
Coloulating	e.g. A_r of calbon – 12. One more of calbon – 12 g.				
Calculating	number of moles = $\frac{\text{mass}(\text{in grams})}{M}$ n = $\frac{\text{m}}{M}$				
number of moles	ivir ivir				
3 – Conservation o	f Mass				
Law of	Mass is always conserved in a chemical reaction.				
conservation of	Mass of reactants = mass of products.				
mass	No atoms are created or destroyed.				
Balanced equations	Balance equations using coefficients (big numbers).				
	e.g. 2 Li + F ₂ -> 2 LiF				
	(2 Li atoms and 2 F atoms on each side)				
Mass may seem to	IT mass increases -> one of the reactants may be a gas, e.g. a metal reacts with oxygen in the air				
change	If mass decreases -> one of the products may be a gas e g				
	bubbles of hydrogen gas are released.				

4 – Reacting Masses (HT only)					
Coefficients in equations	They tell you how many moles of each substance are reacting / being produced.				
	e.g. 2 Mg + O ₂ -> 2 MgO. In this reaction, 2 moles of Mg react with 1 mole of O ₂ and produce 2 moles of MgO.				
Limiting reactant	The reactant that gets completely used up . Mass of limiting reactant will limit mass of products .				
Reactant in excess	This reactant will be left over when the reaction stops .				
	6.9 g of Na is reacted with 7.6 g of F ₂ . Which reactant is limiting? Calculate the mass of NaF formed.				
Example	Balanced Equation Mass M _r Moles = mass/M _r Ratio	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
5 – Concentra	tion of Solutions	will be left over)			
Solute	The substance dissolved in a solution.				
Solvent	The liquid part of a solution, e.g. water.				
Concentration	Amount of solute dissolved in a certain volume of a solution . More solute in a given volume = higher concentration .				
Calculating concentration	concentration (in g/dm³) = volume of solvent (in dm³) $c = m$ V				
Volume conversion	1 dm³ = 1000 cm³ . To go from cm ³ to dm ³ , divide by 1000 .				

GCSE Science

Chemistry C3 – Quantitative Chemistry

Balanced Equation	2 Na	+ F ₂	-> 2 NaF
Mass	6.9 g	7.6 g	12.6 g
M _r	23	38	42 🏫
Moles = mass/M _r	6.9 / 23 = 0.3	7.6 / 38 = 0.2	0.3
	2	: 1	: 2
Datia	0.3	: 0.15	: 0.3
Ratio	Na is limiting (0		
	will be l		