Pythagoras's Theorem

Pythagoras' theorem	a relationship between the 3 sides on a right angled triangle
Pythagoras' theorem	$a^2 + b^2 = c^2$ 'c' is always the hypotenuse
Pythagoras' theorem in 3D	$a^2+b^2+c^2=h^2$

TRIGONOMETRIC RATIOS

trigonometric ratios	sine (sin), cosine (cos) and tangent (tan) use with right angled triangles ratios between 2 lengths and an angle			
hypotenuse	the longest side on a right angled triangle it is always opposite the right angle			
opposite side	this side depends on the angle you are using (θ) it is the angle opposite θ			
adjacent side	this side depends on the angle you are using (θ) it is the angle next to θ			
sine	$sin\theta = rac{opposite}{hypotenuse}$			
cosine	$cos\theta = rac{adjacent}{hypotenuse}$			
tangent	$tan\theta = \frac{opposite}{adjacent}$			
SOHCAHTOA	to remember: $S = \frac{o}{h}$ $C = \frac{a}{h}$ $t = \frac{o}{a}$			

EXACT TRIG VALUES

	0 °	30 °	45°	60 °	90 °
sin	0	1	$\sqrt{2}$	$\sqrt{3}$	1
		2	2	2	
cos	1	$\sqrt{3}$	$\sqrt{2}$	1	0
		2	2	2	
tan	0	1	1	$\sqrt{3}$	
		$\sqrt{3}$			

Year 9 Unit 6: Triangles and Transformations

TRANSFORMATIONS						
translation \rightarrow	translate means to move a shape the shape does not change (congruent) to translate a shape you need a vector in the form $\begin{pmatrix} x \\ y \end{pmatrix}$					
rotation	to turn a shape the shape does not change (congruent) to rotate a shape you need a centre of rotation, the number of degrees to turn, and a direction of turn (clockwise or anticlockwise)					
reflection	reflection means to flip a shape over a mirror line the shape does not change (congruent) to reflect a shape you need a mirror line					
enlargement	to change the size of a shape the shape does change size (similar) to enlarge a shape you need a centre of enlargement and a scale factor of enlargement an enlargement with a fractional scale factor makes the shape smaller an enlargement with a negative scale factor changes the size and flips a shape					
invariant points	points on a line or shape which do not move when a specific transformation is applied					
OTHER NON-LINE	AR GRAPHS					
sine graph	y = sin(x) important points: (0,0), (90,1), (180,0), (270,-1),	1 0 90° 180° 270° 360°				
	(360,0)	-1				
cosine graph	(360,0) $y = cos(x)$ important points: (0,0), (90,-1), (180,0), (270,1), (360,0)					