COORDINATES			Ye
line segment	a line joining two points		QUADR
length of line segment	distance between two points calculated using Pythagoras' theorem .		quadrat graph
Pythagoras' theorem	a relationship between the 3 sides on a right angled triangle $a^2 + b^2 = c^2$ a relationship between the 3 sides on a a b		8. op. 1
midpoint ^(3,2)	the middle of a line segment		
LINEAR GRAPHS			
y = mx + c	the general equation of m is the gradient c is the y-intercept when plotting: use a tak substitute in values of f plot the coordinates, joi	ble of values, x' to generate 'y',	roots (o graphs)
gradient	how steep a line is can be positive or negative <u>(Change in y)</u> or <u>dy</u> (Change in x) dx It gives the rate of change		turning
y- intercept	where the line crosses the	-	
equation from gradient and a point	<pre>substitute the gradient for 'm', and the 'x' and 'y' values from the coordinates to find 'c' re-write the equation in the form y = mx + c</pre>		sketchir quadrat
equation from two points	find the gradient using dy/dx , then use the method as above		
parallel lines	lines with the same gradient ('m' is the same) they never meet they are always the same distance apart		SOLVIN quadrat
perpendicular lines	two lines that meet at a right angle (90°) the product of the two gradients is always -1 the gradient of one line will be the negative		solving quadrat general quadrat
	reciprocal of the gradier	nt of the other line	equatio
REAL LIFE GRAPH	HS		the qua formula
gradient of a curve	the gradient of a curve at a point is the same as the gradient of the tangent at that point		factor
tangent to a curve	a straight line that touches a curve at exactly one point	Tangent line	factoris general quadrat
area under a curve	to estimate the area under a curve, split it up into simpler shapes		differen squares
	 – such as rectangles, triangles and trapeziums 	<u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>	complet square

Year 10 Unit 2: Algebraic Graphs

QUADRATIC GR	APHS	
quadratic graph	a graph where the highest power of x is x² it is always a parabola (a U-shape)	
	$y = x^2$	
	$y = -(x^2)$	
roots (of graphs)	the 'solutions' of a graph, where a function equals zero can be found in a graph where the curve meets the x axis	
turning point	the point where a graph turns , from negative to positive gradient or positive to negative gradient	
sketching quadratics	decide if it is a U or N shape actorise to find the roots, mark them on complete the square to find the turning point, mark it on use the 'd' value as the y-intercept, mark it on	
	RATIC EQUATIONS	
quadratic	a polynomial where the highest power of x is x ²	
solving a quadratic	finding the roots of the graph there are usually two roots / solutions	
general quadratic equation	a quadratic equation is of the form $ax^2 + bx + c = 0$ where a , b and c are numbers, a $\neq 0$	
the quadratic formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
factor	a quantity which divides equally into a number, e.g. factors of 8 are 1, 2, 4 and 8	
factorising a general quadratic	<pre>quadratic: x² + bx + c factorised form: (x + ?)(x + ?) '?' are two numbers whose product is 'c' and sum is 'b'</pre>	
difference of two squares	quadratic: a² – b² factorised form: (a – b)(a + b) square root each number from the original expression	
completing the square	a quadratic in the form $x^2 + bx + c$ written in the form $(x + p)^2 + q$ the turning point of the quadratic is (-p,q)	